
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

UVL.js: Experiences on using UVL in the JavaScript Ecosystem
Victor Lamas

Universidade da Coruña, CITIC
Research Center, Database Lab.

A Coruña, Spain
victor.lamas@udc.es

Maria-Isabel Limaylla-Lunarejo
Universidade da Coruña, CITIC
Research Center, Database Lab.

A Coruña, Spain
maria.limaylla@udc.es

Miguel R. Luaces
Universidade da Coruña, CITIC
Research Center, Database Lab.

A Coruña, Spain
miguel.luaces@udc.es

David Romero-Organvidez
drorganvidez@us.es

I3US, Universidad de Sevilla
Seville, Spain

José A. Galindo
jagalindo@us.es

I3US, Universidad de Sevilla
Seville, Spain

David Benavides
benavides@us.es

I3US, Universidad de Sevilla
Seville, Spain

ABSTRACT
The Universal Variability Language (UVL) was developed as a
community-driven effort to create a simple yet extensible language
for feature modeling, promoting tool interoperability within the
software product line community. Although UVL is supported
by several tools like FeatureIDE, Flamapy, and Pure::variants, it
currently lacks direct support for web environments. To address
this, we introduce a JavaScript-based UVL parser built with the
ANTLR framework. This parser makes UVL models accessible di-
rectly within browser-based environments, eliminating the need
for extra installations and enhancing UVL’s usability for web-based
tools. Furthermore, the parser can be used in back-end environ-
ments with JavaScript runtime environments such as Node.js. The
parser has been successfully tested with more than 1,000 UVL mod-
els available on UVLHub and supports various UVL language levels
and conversion strategies. We demonstrate its integration through
two use cases: UVLHub, a public repository for UVL models de-
veloped using open science principles, and an application lifecycle
management tool for software product lines. This JavaScript UVL
parser is the first of its kind, unlocking new possibilities for web
and JavaScript applications to take advantage of the advancements
in UVL technology.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Reusability; Software libraries and repositories; Abstraction,
Modeling and Modularity; Context specific languages.

ACM Reference Format:
Victor Lamas, Maria-Isabel Limaylla-Lunarejo, Miguel R. Luaces, David
Romero-Organvidez, José A. Galindo, and David Benavides. 2025. UVL.js:
Experiences on using UVL in the JavaScript Ecosystem. In 19th International
Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS 2025), February 04–06, 2025, Rennes, France. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3715340.3715437

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
VaMoS 2025, February 04–06, 2025, Rennes, France
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1441-2/25/02
https://doi.org/10.1145/3715340.3715437

1 INTRODUCTION
The Universal Variability Language (UVL), a textual notation for
variability models, was recently developed due to community effort
[2]. The MODEVAR initiative [1] aims to achieve widespread adop-
tion of a single language (UVL), as the variety of languages available
limits tool interoperability [6]. To support this, the UVL parser [10]
introduces an extension mechanism designed to handle different
levels of complexity. It includes two main components: language
levels, which define a simple core language with optional and more
complex extensions, and conversion strategies that allow tools to
translate between these levels. These strategies replace complex
constructs with simpler and semantically equivalent expressions,
enabling better tool interoperability. The parser allows tool devel-
opers to select the language level they support while automatically
converting unsupported features.

JavaScript is a dynamic, high-level programming language that
has become crucial for modernweb development. Its primary role as
a web application language is to allow developers to design respon-
sive and interactive user interfaces directly within the browser. Its
flexibility extends far beyond scripting on the client side. JavaScript
has evolved into a powerful platform for server-side development,
supporting a whole ecosystem of server-side components, espe-
cially with the introduction of runtime environments like Node.js.
This includes frameworks for building services, REST APIs, and
full-fledged back-ends. Because of its seamless integration with
HTML and CSS, JavaScript is widely used and indispensable for cre-
ating intricate, feature-rich web applications that work on various
platforms.

In this work, we enhance UVL’s accessibility for web platforms
by introducing a JavaScript-based parser for the language. Using
JavaScript’s widespread adoption and client-side runtime capabili-
ties, the parser makes UVL accessible in web-based environments
without requiring additional tooling or installations. This facilitates
more straightforward integration with current web technologies
and encourages wider adoption of UVL by enabling developers to
process and work with variability models within web applications.
The parser also supports UVL’s language levels and conversion
strategies to ensure compatibility with different toolchains.

Listing 1 shows an example in UVL format of a feature model
to obtain different smartwatch configurations. There are two main
blocks: features and constraints. Thanks to the indentations, we can
create blocks that group the features under a common hierarchy. For

1

https://orcid.org/0000-0001-8960-1299
https://orcid.org/0000-0002-9619-924X
https://orcid.org/0000-0003-0549-2000
https://orcid.org/0000-0002-8228-3483
https://orcid.org/0000-0001-9293-9784
https://orcid.org/0002-7771-0575
https://doi.org/10.1145/3715340.3715437
https://doi.org/10.1145/3715340.3715437


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

VaMoS 2025, February 04–06, 2025, Rennes, FranceVictor Lamas, Maria-Isabel Limaylla-Lunarejo, Miguel R. Luaces, David Romero-Organvidez, José A. Galindo, and David Benavides

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

example, in the mandatory block, at the first level of indentation,
there are the features screen and energy management. In turn,
the feature screen is of the alternative type, i.e., there is a choice
between two types of screen: touch or standard. The constraints
block allows the definition of restrictions between features, using
the features’ identifiers as a reference.

Listing 1: Feature model example in UVL
1 namespace smartwatch
2
3 features
4 smartwatch
5 mandatory
6 screen
7 alternative
8 touch
9 standard
10 "energy management"
11 alternative
12 basic
13 "advanced solar"
14 optional
15 payment
16 gps
17 "sports tracking"
18 or
19 running
20 skiing
21 hiking
22
23 constraints
24 !( payment & standard)
25 "sports tracking" => gps

2 JAVASCRIPT PARSER FOR UVL
The UVL Parser [10] for Python and Java has already been published
in a GitHub repository1. The repository encourages community
collaboration by accepting contributions in other languages imple-
menting UVL parsing. ANTLR is the foundation for the grammar
parsing [7]. Our work involved adding new definitions to the base
grammar already established for other languages in the repository,
specifically incorporating elements such as opening and closing
parentheses and brackets, considering the different features’ depth.
We then used the ANTLR4 JavaScript generator to generate the
corresponding JavaScript classes based on UVL grammar automati-
cally. These classes produce interfaces programmers can implement
to process, read, and export the Abstract Syntax Tree (AST) from
any UVL feature model definition. The parser initially passed 70%
of the UVLs when we first tested it with all UVLs available on UVL-
Hub. The errors were not due to our parser but rather the improper
use of quotation marks in certain UVLs. We informed the UVLHub
administrators so they could correct the issue. After they resolved
it, we revalidated our parser with all UVLs from UVLHub, and it
successfully passed their 1,515 feature models.

1 import { FeatureModel } from 'uvl -parser ';
2 const featureModel = new FeatureModel('

example.uvl');
3 const tree = featureModel.getFeatureModel ();

Listing 2: Example usage of JavaScript UVL Parser
1https://github.com/Universal-Variability-Language/uvl-parser

Listing 2 demonstrates a basic usage example. The process begins
by importing the FeatureModel class. Next, an instance of the
class is created, with the UVL file location passed as an argument
to the constructor. The location of the UVL file is provided as an
argument to the constructor, which creates an instance of the class.
The constructor will directly parse the input text if the file is not
found at the specified path. In this case, it will treat the parameter
as if the UVL were provided in plain text rather than as a file path.
The method getFeatureModel() within the FeatureModel class
parses the UVL file into an AST. An error is raised if the file does
not conform to the UVL grammar.

To further enhance the usability of this new parser, it has been
added to the standard package manager for Node.js: the npm reg-
istry 2. This allows developers to easily include the library as a
dependency on their existing Node.js projects.

3 INTEGRATION INTOWEB-BASED TOOLS
We integrated the parser into two distinct tools: UVLHub and
SPLALM. The following sections describe these integrations.

3.1 UVLHub, an Online Repository for UVL
Models

UVLHub is a repository for feature models in UVL format [9]. It
adheres to open science principles, promoting the dissemination
and sharing of knowledge [8]. The repository is integrated with
Zenodo 3 to ensure the permanent storage of the models. This in-
tegration enables each model to receive a Digital Object Identifier
(DOI) for easy citation. UVLHub also provides an REST API, al-
lowing programmatic access to the models and facilitating their
integration into other analysis tools. By unifying and standardizing
access to feature models, UVLHub contributes to open science. It
promotes transparency and replicability in software engineering
variability research, enabling researchers to access and share data
effectively.

Figure 1 shows the integration of uvl-parser with UVLHub. The
uvl-parser package is available through the Node.js NPM manager.
UVLHubmaintains a package logwithin its package.json file, includ-
ing the uvl-parser package. Due to the modular architecture of UVL-
Hub, eachmodule specifies how its JavaScript scripts should be com-
piled using Webpack. Webpack is a module bundler for JavaScript
that combines and optimizes code files and resources—such as CSS,
images, and scripts—into one or more files [3]. This process en-
hances development efficiency and improves the performance of
web applications.

The parser integration with the actual JavaScript code has been
done thanks to the snippet shown in Listing 2. The integration
occurs on the client side to optimize resources. Whenever a UVL
file is uploaded, the system parses its content. If any syntax errors
are detected, they are displayed in the interface, and the upload
is canceled. This parser ensures that invalid UVL models are not
uploaded. Figure 2 shows the visual interface of UVLHub and the
error message that the uvl-parser throws when trying to upload

2https://npmjs.com/package/uvl-parser
3https://zenodo.org/

2

https://github.com/Universal-Variability-Language/uvl-parser
https://npmjs.com/package/uvl-parser
https://zenodo.org/


233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

UVL.js: Experiences on using UVL in the JavaScript Ecosystem VaMoS 2025, February 04–06, 2025, Rennes, France

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Integration of the UVL parser into UVLHub ecosys-
tem

Figure 2: Integration of the UVL parser into UVLHub graphic
interface

a UVL model with syntactical errors. This integration is already
available in the production version of UVLHub 4.

3.2 SPLALM, a Web-based PLE Factory
SPLALM [4] is an application lifecycle management tool designed
for software product lines. SPLALM enables users to manage multi-
ple software product lines, each characterized by its feature model
in UVL and a collection of source code assets. Within SPLALM,
users can also maintain a portfolio of products, with each product
having its configuration and associated source code. SPLALM uses
GitLab as a version control repository for product source code and
product line assets. It implements a Git branching model to track
configuration history effectively. SPLALM uses spl-js-engine [5],
a JavaScript library created to produce source code for finished
products using an annotative approach. This is accomplished by
combining a product specification, a feature model for a product
line, and annotated code. Spl-js-engine verifies the product specifi-
cation against the feature model before producing the code.

4https://www.uvlhub.io

Ad-Hoc
UVL Parser Feature IDE Parser

PRODUCT DERIVATION

APPLICATION ENGINEERING

Gitlab

SPL-JS-EngineProduct Builder

PLE factory configurator

Figure 3: Architecture of SPLALM product derivation before
UVL parser changes

PRODUCT DERIVATION

APPLICATION ENGINEERING

Gitlab

SPL-JS-EngineProduct Builder

PLE factory configurator

JavaScript
UVL Parser Feature IDE Parser

Figure 4: Architecture of SPLALM product derivation after
UVL parser changes

In SPLALM, the product derivation component plays a critical
role in managing and generating software products based on de-
fined feature models. When providing a feature model for the SPL,
SPLALM accepts both FeatureIDE files and UVL files. However,
the product derivation component relied on a custom, ad-hoc UVL
parser because the official UVL parser did not support JavaScript.
Moreover, the component had to convert UVL files into the Fea-
tureIDE language because it was the only format accepted by the
spl-js-engine for code generation, as shown in Figure 3.

The introduction of a new, integrated JavaScript UVL parser
marked a significant improvement. As shown in Figure 4, the ad-
hoc UVL parser was removed, and the new JavaScript UVL parser
was directly integrated into the spl-js-engine derivation engine.
This integration allowed the derivation engine to autonomously de-
termine which parser to use based on the input file format, whether
FeatureIDE or UVL. As a result, the engine can now directly gen-
erate the Abstract Syntax Tree (AST) from the input, improving
the process of producing the final source code for the required
products. This transition from a standalone ad-hoc UVL parser to
an integrated parser within the derivation engine yielded several

3

https://www.uvlhub.io


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

VaMoS 2025, February 04–06, 2025, Rennes, FranceVictor Lamas, Maria-Isabel Limaylla-Lunarejo, Miguel R. Luaces, David Romero-Organvidez, José A. Galindo, and David Benavides

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

advantages. It eliminated an unnecessary processing step, reduc-
ing dependencies on external components. By integrating the UVL
parser, the overall performance and simplicity of SPLAM were sig-
nificantly improved. This change not only simplifies maintenance
but also alleviates some technical debt. Figure 4 shows a screenshot
of the Graphical User Interface of the UVL editor in SPLALM, which
UVL.js supports.

Figure 5: SPLALM Graphical User Interface: UVL editor

4 CONCLUSIONS AND FUTUREWORK
In this paper, we improved the accessibility and usability of the
Universal Variability Language (UVL) in web-based environments
by introducing a parser for UVL based on JavaScript. We show-
cased the parser’s seamless integration into two web-based tools,
utilizing JavaScript’s widespread application in web development
to encourage broader UVL adoption without requiring extra soft-
ware installations. The parser supports UVL’s language levels and
conversion strategies, ensuring interoperability across different
toolchains.

For future work, we propose developing more complex libraries
around the parser to expand its capabilities and utility in diverse
applications.

MATERIAL
We provide the code related to the paper. You can find the JavaScript
version of the parser at this link: https://github.com/Universal-
Variability-Language/uvl-parser, and the UVLHub code for inte-
gration at https://github.com/diverso-lab/uvlhub.

ACKNOWLEDGMENTS
Partly funded by: TED2021-129245B-C21 (PLAGEMIS): partially
funded by MCIN/AEI/10.13039/501100011033 and “NextGenera-
tionEU”/PRTR; PID2022-141027NB-C21 (EarthDL): partially funded
by MCIN/AEI/10.13039/501100011033 and EU/ERDF A way of mak-
ing Europe; CITIC is funded by the Xunta de Galicia through the
collaboration agreement between the Department of Culture, Edu-
cation, Vocational Training and Universities and the Galician uni-
versities for the reinforcement of the research centers of the Galician
University System (CIGUS). This work was also partially supported
by FEDER/Ministry of Science, Innovation and Universities/Junta de
Andalucía/State Research Agency/CDTI with the following grants:

Data-pl(PID2022-138486OB-I00) , TASOVA PLUS research network
(RED2022-134337-T), AquaIA (GOPG-SE-23-0011) and MIDAS (IDI-
20230256). David Romero-Organvidez is supported by PREP2022-
000335, financed by MICIN/AEI/10.13039/501100011033 and by
FSE+.

REFERENCES
[1] David Benavides, Rick Rabiser, Don Batory, and Mathieu Acher. 2019. First

International Workshop on Languages for Modelling Variability (MODEVAR
2019). In Proceedings of the 23rd International Systems and Software Product Line
Conference - Volume A (Paris, France) (SPLC ’19). Association for Computing
Machinery, New York, NY, USA, 323. https://doi.org/10.1145/3336294.3342364

[2] David Benavides, Chico Sundermann, Kevin Feichtinger, José A Galindo, Rick
Rabiser, and Thomas Thüm. 2024. UVL: Feature Modelling with the Universal
Variability Language. Available at SSRN 4764657 (2024).

[3] Mohamed Bouzid. 2020. Webpack for Beginners: Your Step-by-Step Guide to
Learning Webpack 4. https://doi.org/10.1007/978-1-4842-5896-5

[4] Alejandro Bujan, A. Cortiñas, and M. R. Luaces. 2024. Development of a PLE
Factory Environment with GitLab Integration and following ISO/IEC 26580. In
Proceedings of the 28th ACM International Systems and Software Product Line
Conference (SPLC 2024). Luxemburgo, 34–37.

[5] A. Cortiñas, M. R. Luaces, and O. Pedreira. 2022. spl-js-engine: a JavaScript tool to
implement Software Product Lines. In Proceedings of the 26Th ACM International
Systems And Software Product Line Conference (SPLC 2022). Graz, 66–69.

[6] José A. Galindo, José Miguel Horcas, Alexander Felfernig, David Fernández-
Amorós, and David Benavides. 2023. FLAMA: A collaborative effort to build a new
framework for the automated analysis of featuremodels. In Proceedings of the 27th
ACM International Systems and Software Product Line Conference - Volume B, SPLC
2023, Tokyo, Japan, 28 August 2023- 1 September 2023, Paolo Arcaini, Maurice H.
ter Beek, Gilles Perrouin, Iris Reinhartz-Berger, Ivan Machado, Silvia Regina
Vergilio, Rick Rabiser, Tao Yue, Xavier Devroey, Mónica Pinto, and Hironori
Washizaki (Eds.). ACM, 16–19. https://doi.org/10.1145/3579028.3609008

[7] T. J. Parr and R. W. Quong. 1995. ANTLR: A predicated-
LL(k) parser generator. Software: Practice and Experience
25, 7 (1995), 789–810. https://doi.org/10.1002/spe.4380250705
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705

[8] Rahul Ramachandran, Kaylin Bugbee, and Kevin Murphy. 2021. From open
data to open science. Earth and Space Science 8 (2021). https://doi.org/10.1029/
2020EA001562

[9] David Romero-Organvidez, José A. Galindo, Chico Sundermann, Jose-Miguel
Horcas, and David Benavides. 2024. UVLHub: A feature model data repository
using UVL and open science principles. Journal of Systems and Software 216
(2024), 112150. https://doi.org/10.1016/j.jss.2024.112150

[10] Chico Sundermann, Stefan Vill, Thomas Thüm, Kevin Feichtinger, Prankur Agar-
wal, Rick Rabiser, José A. Galindo, and David Benavides. 2023. UVLParser:
Extending UVL with Language Levels and Conversion Strategies. In Proceedings
of the 27th ACM International Systems and Software Product Line Conference -
Volume B (Tokyo, Japan) (SPLC ’23). Association for Computing Machinery, New
York, NY, USA, 39–42. https://doi.org/10.1145/3579028.3609013

4

https://github.com/Universal-Variability-Language/uvl-parser
https://github.com/Universal-Variability-Language/uvl-parser
https://github.com/diverso-lab/uvlhub
https://doi.org/10.1145/3336294.3342364
https://doi.org/10.1007/978-1-4842-5896-5
https://doi.org/10.1145/3579028.3609008
https://doi.org/10.1002/spe.4380250705
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705
https://doi.org/10.1029/2020EA001562
https://doi.org/10.1029/2020EA001562
https://doi.org/10.1016/j.jss.2024.112150
https://doi.org/10.1145/3579028.3609013

	Abstract
	1 Introduction
	2 JavaScript Parser for UVL
	3 Integration into Web-based Tools
	3.1 UVLHub, an Online Repository for UVL Models
	3.2 SPLALM, a Web-based PLE Factory

	4 Conclusions and Future work
	Acknowledgments
	References

