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ABSTRACT
Geosciences have witnessed a revolution in data collection thanks
to the Internet of Things (IoT), which has made it possible to moni-
tor complex phenomena using sensor networks. However, devel-
oping web-centric, sensor-based, data warehousing information
systems presents challenges because of their complexity and cost.
This paper presents an intuitive low-code development system
(called SensorPublisher), based on a software product line (SPL) and
a domain-specific language (DSL), that speeds up the creation of
data warehousing applications for geographic sensor data. Sensor-
Publisher allows the geoscientist to define the sensor network, to
generate a software product, and to deploy the product to a local or
a remote server. Our tool seeks to encourage scientists to share the
outcomes of their sensor data analysis projects with their communi-
ties by means of a simple, user-friendly and cost-effective approach.
We showcase the system in different geoscientific domains, such
as meteorological monitoring services, traffic data and air quality
monitoring in urban areas, and marine area monitoring systems.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Reusability; Abstraction, Modeling and Modularity; Software archi-
tectures.
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1 INTRODUCTION
The Internet of Things (IoT) has revolutionized data collecting in
several disciplines and brought about a paradigm change in modern
geosciences. Researchers looking to gain a thorough understand-
ing of Earth’s dynamic processes are integrating an ever-growing
variety of sensor data. Oceanography, mobility studies, and environ-
mental sciences are just a few of the areas that employ systems that
combine IoT and geographic data. By employing specialized sensors,
sensor networks, and real-time data collection, these technologies
offer valuable insights into complex phenomena like monitoring
oceanographic parameters, traffic patterns, air quality evaluation,
or meteorological monitoring.

Developing IoT dashboards that exploit the data collected is a
significant challenge for geoscience researchers. It involves man-
aging complex data formats, understanding advanced information
systems technology, and developing functionality for data visualiza-
tion and interpretation. Data exploration, information filtering, and
aggregation using time, space, attribute values, visually appealing
charts, and histograms are all functionalities that researchers want
to have at their disposal. However, this kind of system is compli-
cated to develop and needs advanced skills in many areas, such
as:

• Ingestion and reception of real-time sensor data that needs
the use of a stream processing module.

• Storing the data requires knowledge of how to create and
manage database systems.

• A backend must be created in which queries can be made
to the database with information on both sensors and the
measurements they record. The system must be able to make
aggregations and apply filters of millions of sensor measure-
ments, these aggregations being both spatial (e.g., predefined
zones by the user, administrative zones) or temporal (e.g.,
hourly, daily, weekly, etc), and do so while obtaining re-
sponse times that are not very high for a good end-user
experience.

• A web application must be developed, allowing final users
to view the results from aggregating and filtering sensors,
representing them in an interactive map. It must also allow
the exploration of the values evolution for each of the sensors
or the spatial aggregations.

As a consequence, geoscience researchers frequently discover that
their productivity and efficiency are limited by this complexity
because it is not just about creating the system and its features; it
is also crucial to ensure scalability and optimize response times.

Although each IoT dashboard is different from all the others, they
all share several common features such as i) using a stream-oriented
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data ingestion mechanism to collect the data from the sensors, ii)
being based on a data lake because of the heterogeneity of the data,
iii) providing tools for discovery and exploration of the information
to determine if the data sets are relevant and appropriate, iv) offering
a set of processing tools to work with the data in the data lake
and generate new information, v) and interacting with the system
using a geographic information system-based tool to visualize the
information and results on a map, in addition to traditional listings.
Despite the variations that exist across systems, the presence of
shared features suggests that they can be managed as a family of
software products, potentially utilizing variability management
techniques.

In this paper, we describe a framework that creates web-centric,
sensor-based, data warehousing information systems. Our contri-
butions center around three main areas:

• A software product line: We describe a software product
line designed specifically for information systems that collect
and visualize data from sensor networks.

• A domain-specific language: We propose a DSL for defin-
ing and working with sensor measurements and their prop-
erties. This DSL is a useful tool for domain experts who not
familiar with code development.

• A low-code development tool: We propose a tool that can
be used via command line or using a web browser to create
and deploy complex sensor-based information systems.

The rest of the paper is structured as follows. An analysis of
previous work in the areas of software product lines and domain-
specific languages related to geographic information systems is
presented in Section 2 because it is used as a foundation for this
paper. The suggested framework is described in Section 3, along
with details about the DSL definition, tool architecture and usage,
insights into the Software Product Line, and architecture of the
generated products. In Section 4 we present experimental results
on three scenarios in the geosciences field using the framework.
In Section 5 the paper concludes with a summary of the results
obtained.

2 BACKGROUND
2.1 Creating web-based GIS using Software

Product Lines and Domain Specific
Languages

SPLs have changed software development by enabling the creation
of diverse products through systematic artifact reuse. Various strate-
gies and tools have emerged to create and manage SPLs tailored to
address specific challenges in different domains. Our contribution
to this field is SPL-JS-Engine [4], which is a JavaScript library that
utilizes an annotative approach to generate final product source
code from feature models, annotated code, and product specifica-
tions. We used SPL-JS-Engine to develop an SPL specifically tailored
for Geographic Information Systems (GIS) [5].

However, we found it difficult to express the variability of the
products using only a feature model. Researchers have investigated
how to combine product line engineering and domain-specific lan-
guages (DSL) [7] while maintaining the separation of problem and
solution domains [9]. Integrating product-line architectures and

DSLs is effective in managing feature models at scale [1] and devel-
oping command-and-control simulators [3]. With these advantages
in mind, we presented a DSL [2] created exclusively for web-based
GIS application development. This DSL gives developers the abil-
ity to define the application visualization model (i.e., maps, layers,
styles, and entity specifications) in a declarative language.

Finally, we continued our research to improve SPL techniques
for GIS creation and released GIS-Publisher [6], an SPL designed
for web-based GIS production, which was released together with a
specific DSL. This toolkit automates repetitive procedures required
in product development and deployment, while also streamlining
the publication and exchange of geographic data.

2.2 OGC SensorThings

1 0..*

Sensor

name: CharacterString

description: CharacterString

encodingType: ValueCode

metadata: Any

properties: JSON_Object[0..1]

1 0..*

ObservedProperty

name: CharacterString

definition: URI

description: CharacterString

properties: JSON_Object[0..1]

0..*

1

DataStream

name: CharacterString

description: CharacterString

observationType: ValueCode

unitOfMeasurement: JSON_Object

observedArea: GM_Envelope[0..1]

phenomenomTime: TM_Period[0..1]

resultTime: TM_Period[0..1]

properties: JSON_Object[0..1]

0..* 0..*

Thing

name: CharacterString

description: CharacterString

properties: JSON_Object[0..1]

Location

description: CharacterString

name: CharacterString

encodingType: ValueCode

location: Any

properties: JSON_Object[0..1]

1..* 0..*

1

0..*

HistoricalLocation

time: TM_Instant

0..*

1

Observation

phenomenomTime: TM_Object

resultTime: TM_Instant

result: Any

resultQuality: DQ_Element[0..*]

validTime: TM_Period[0..1]

parameters: JSON_Object[0..1]

1 0..*

FeatureOfInterest

name: CharacterString

description: CharacterString

encodingType: ValueCode

feature: Any

properties: JSON_Object[0..1]

Figure 1: OGC SensorThings Model [8]

One of the top priorities for the Open Geospatial Consortium
(OGC1) has been the development of standards that solve inter-
operability problems. Over the course of the past few years, the
OGC SensorThings API footnotehttps://www.ogc.org/standard/
1https://www.ogc.org/
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sensorthings/ has gained a growing amount of popularity. The Sen-
sorThings Standard provides a simplified and standardized method
for defining, retrieving, and managing sensor systems that are part
of the IoT. Given its relevance in geosciences, we use the Sensor-
Things Standard in our IoT Dashboard to ensure interoperability.
Specifically, we align our concepts with key SensorThings entities
such as Thing, DataStream, and Observation. A Thing refers to
a physical or virtual entity that can be sensed. A DataStream rep-
resents a series of observations or measurements collected over
time generated by a Thing. An Observation represents a single
measurement or reading captured by a sensor at a specific point in
time.

3 A FRAMEWORK FOR CREATING IOT
DASHBOARDS

Our framework consists of an automated workflow that helps geo-
scientists to remain focused on the domain problem, rather than
being distracted by the details of the final product code. We show
the high-level workflow in Figure 2. The steps of the workflow are
the following:

(1) Product Description: Users begin by defining the sensor
data model using a DSL. They also specify desired product
features and deployment preferences.

(2) Sensor Publisher: The core component in the framework
orchestrates the entire workflow. It checks that the user-
provided sensor definition is correct and confirms that the
feature selection is a legitimate configuration given the re-
strictions of the feature model. Once validated, it generates
a complete product specification containing deployment de-
tails, feature model selections, and sensor definitions.

(3) Sensor Builder SPL: This component uses the information
from the specification to generate source code based on
the software product line annotated code, fulfilling all user
specifications.

(4) Product Deployer: This component handles product de-
ployment, currently providing three options: local machine
deployment, SSH deployment (Ubuntu/Debian), and AWS
deployment.

Sensor
Publisher

Sensor Builder
SPL

Product deployer

Functionality

Sensor
Specification

Deployment
Information

Product
Specification

Product
Source Code

Product
Source Code

AWS
SSH
Local

Product
Deployment

1 2

4

3

Product
Description

Figure 2: Framework Workflow

The following sections detail each step of the workflow, provid-
ing explanations of the process at each stage.

3.1 Product Description
As depicted in Figure 2, users initially define the specification of
the sensors, followed by customizing the software product through
the selection of features from the provided Feature Model, and they
finally specify the deployment information for the final product.
We will now describe the way they provide this information.

3.1.1 Domain Specific Language for Sensors Definition. We
decided to create our domain-specific language to describe the sen-
sor network and the IoT dashboard by building upon the conceptual
model defined by the OGC SensorThings API standard. We wanted
the metamodel of our language to extend SensorThings to ensure
interoperability. The metamodel is shown in Figure 3.

Sensor and Measurement are the core classes of our metamodel.
The class Sensor represents the collection of sensors of a given
type and thus it is a specialization of the DataStream class from the
OGC SensorThings API standard. Each sensor type has a name, an
interval that defines how often the sensor will collect data, the data
source where the data will be stored in the generated product, the
type of geometry of the sensor, and a set of properties owned by
the sensor, specified with the Property class. A property is defined
by its name and its data type, which can be any of the types in the
enumeration SupportedType.

The Measurement class defines themeasurements that the sensor
will collect over time, and it is a specialization of the Observation
class from the OGC SensorThings API standard. A measurement
is defined by its name and its data type which can be the same as
the sensor property type. It also optionally defines its units as text
and its icon, which can be any of the Material Design Icons2. A
Range can be added to each measurement property so that the data
in the final product can be shown in different colors depending on
the ranges specified. Lastly, for each sensor, a bounding box can
be defined (i.e., the BBox), so that the final map will start at a fixed
position covering all sensors.

In order to build a datawarehouse with sensor data, we con-
sider each Sensor with its Measurements to be a fact table of the
datawarehouse. For each Sensor, multiple spatial and categorical
dimensions can be defined. Each SpatialDimension has a name,
a geometry, and a set of properties. It can also have a parent that
contains a reference to another spatial dimension to create a hier-
archical spatial dimension that can be used for aggregations and
filters. Similarly, each CategoryDimension has a name and a cor-
responding field that represents the attribute that the final data
warehouse will use to represent the categorical values. Finally,
SpatialGroup and CategoryGroup associate each sensor with its
spatial and categorical dimensions. The temporal dimension of the
data is taken into account in the IoT dashboard, but it does not
have to be specified by the user because a temporal hierarchical
dimension is inferred by the framework from the interval attribute
of the sensor.

Sensors can be grouped using the SensorGroup class. This allows
the user to combine multiple sensors that measure certain attributes

2https://m3.material.io/styles/icons/overview
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1
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1

Measurement
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1..*
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1
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1
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1

1
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1
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label: String

RangeValue
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max: Double
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<<enumeration>>
DataSource

ELASTICSEARCH
POSTGRES

<<enumeration>>
SpatialType

LINESTRING
MULTILINESTRING
POLYGON
MULTIPOLYGON
POINT
MULTIPOINT

<<enumeration>>
SupportedType

LONG
BOOLEAN
FLOAT
INTEGER
DOUBLE
STRING
LOCALDATE
DATETIME
LINESTRING
MULTILINESTRING
POLYGON
MULTIPOLYGON
POINT
MULTIPOINT

Observation

phenomenomTime: TM_Period[0..1]

1

0..*

Product

name: String

SRID: Number

1

0..*

Figure 3: Class Diagram of the DSL Metamodel

of a physical or virtual entity, and hence it is a specialization of
a Thing from the OGC SensorThings API standard. Finally, the
class Product represents the complete project with a name and the
spatial reference system (SRID).

The listings that follow show the textual syntax of our DSL. The
specification of a product starts with the sentence CREATE PRODUCT
(see Listing 1). Then, each sensor definition can be specified using
the sentence CREATE SENSOR (see Listing 2). For each sensor type,
the language allows to specify the sensor data, its properties (in the
WITH PROPERTIES clause), its measurements (in the MEASUREMENT
DATA clause), the spatial dimensions (in the SPATIAL GROUP clause),
the categorical dimensions (in the CATEGORICAL GROUP clause), and
the sensor network bounding box (in the BBOX clause). It is also
possible to add a RANGE to CATEGORICAL GROUP or measurements
so that the final user can aggregate and filter by these ranges.

1 CREATE PRODUCT name USING srid;

Listing 1: CREATE PRODUCT sentence

1 CREATE SENSOR name (

2 interval: integer,

3 datasource: datasourceType,

4 geometry: geometryType

5 ) WITH PROPERTIES (

6 propertyName1 dataType1 [DISPLAY_STRING] [REQUIRED] [UNIQUE],
7 propertyName2 dataType2 [DISPLAY_STRING] [REQUIRED] [UNIQUE]
8 ...

9 ) WITH MEASUREMENT DATA
10 measurementName1 dataType1 [UNITS String] [ICON String] [RANGE

rangeRef1],

11 measurementName2 dataType2 [UNITS String] [ICON String] [RANGE
rangeRef2],

12 ...

13 ) WITH SPATIAL GROUP dimAggName1 (

14 spatialDimRef1,

15 spatialDimRef2,

16 ...

17 ) WITH SPATIAL GROUP dimAggName2 (

18 spatialDimRef3,

19 ...

20 ) WITH CATEGORICAL GROUP catAggName1 (

21 categoricalDimRef1 [RANGE rangeRef1],

22 ...

23 ) WITH BBOX
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24 ([Double, Double], Integer) | (Double, Double, Integer)

25 );

Listing 2: CREATE SENSOR sentence

Spatial and categorical dimensions are defined using specific sen-
tences so that they can be reused. Listing 3 shows the syntax of the
CREATE SPATIAL DIMENSION sentence. Similarly, Listing 4 shows
the syntax of the CREATE CATEGORICAL DIMENSION statement.

1 CREATE SPATIAL DIMENSION dimName (

2 geometry: geometryType

3 ) WITH PROPERTIES (

4 prop1 dataType1 [DISPLAY_STRING]
5 ...

6 ) WITH PARENT (

7 dimNameParent

8 );

Listing 3: CREATE SPATIAL DIMENSION sentence

1 CREATE CATEGORICAL DIMENSION dimName (

2 field: String

3 );

Listing 4: CREATE CATEGORICAL DIMENSION sentence

The statement CREATE SENSORGROUP (shown in Listing 5) is used
to define a collection of sensors.

1 CREATE SENSORGROUP sensorGroupId (

2 SensorId1,

3 SensorId2

4 );

Listing 5: CREATE SENSORGROUP sentence

Finally, CREATE RANGE can be used to define ranges, each one
consisting of a name and a list of ranges. These ranges can either
be made up of a single unique value or a range that is represented
in the format x TO y. Additionally, each range can have a specific
color assigned to it by using the COLOR keyword. Lastly, each range
will have a label assigned to it using the AS keyword.

1 CREATE RANGE rangeName (

2 propValue1 AS "propName1" [COLOR hexColor] ||

3 FROM propValue1 TO propValue2 AS "propName1" [COLOR hexColor]

4 ...

5 );

Listing 6: CREATE RANGE sentence

3.1.2 Feature Selection. Figure 4 depicts the feature model of the
software product line. It enables users to select functionality related
to the management of layers on the map, the types of legends used
for data aggregation, available filters, the presence of a timeline,
whether rasters and value evolution charts can be displayed, cre-
ation of producers and consumers for real-time data ingestion, and
inclusion of an artificial data generator for development purposes.

3.1.3 Deployment Information. In addition to specifying the
sensor information and product functionality, users can also choose
to either generate only the source code of the final product or deploy
the application on amachine. This can be achieved by specifying the
desired deployment method, including running the complete sys-
tem locally, remotely via SSH, or on Amazon Web Services (AWS).

Figure 4: Feature Model of sensor-related features

Based on this selection, users can input machine credentials for SSH
connectivity, AWS credentials, and other AWS-related information
such as the type of instance to create.

See the Product Deployment section 3.4 for additional details on
the deployment process.

3.2 SensorPublisher
SensorPublisher is the tool that orchestrates the entire workflow. It
checks the validity of the product description, generates a complete
product specification, and uses the Sensor Builder SPL to generate
the product source code. Finally, if necessary, it uses the Product
Deployer to deploy the product. The tool can be used through both
command line and graphical user interface (GUI) modes. In com-
mand line mode, the product description, comprising an instance
of the sensor DSL, a feature selection, and deployment details are
provided as text files. Alternatively, the tool offers a web-based
GUI. Within the GUI, users can define sensor specifications using
an embedded text editor, as shown in Figure 5, which incorpo-
rates a drag-and-drop functionality for text files. Additionally, a
visual representation of the feature model is available. Users can
customize the final product by selecting desired features from this
representation, as shown in Figure 6.

3.3 Sensor Builder SPL
Once the user has completed the configuration process by choos-
ing features from the feature model, using the DSL to describe the
sensor network, and optionally choosing deployment information,
SensorPublisher generates a specification. This specification is cre-
ated in a JSON file containing all the data required to generate the
product’s final code.

We developed and annotated code for the SPL to support the
generation of the products. This code base implements a large set
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Figure 5: SensorPublisher GUI DSL Editor

Figure 6: SensorPublisher GUI Feature Model Selector

of functionalities related to sensor information, including spatial,
temporal, and categorical group data. Moreover, it enables visual-
ization of information on a map, allowing the end users to perform
analyses within a web-based product. The web-based product also
allows for query creation, enabling aggregations and data filtering,
as well as workflows for data ingestion into the final system. All
the code is annotated to identify the features shown in Figure 4.

The general architecture of the annotated code (see Figure 7) con-
sists of a front-end web-based application created with Vue.js, and

server

client

elasticsearch

API Rest

apache kafka
broker

zookeper
update offset

kafka
producers

get broker id

Kafka Cluster

push msgpull msg

Kafka Ecosystem

postgres
+

postgis

kafka
consumers

kibana

Figure 7: Generated Product Architecture

for map visualization, we developed a library named map-viewer,
which serves as a wrapper for the Leaflet.js library 3. The Vue
web application renders the user interface and manages user in-
teractions. It communicates with server-side components through
RESTful APIs. The back-end infrastructure comprises a Spring Boot-
based server responsible for data processing, business logic, and
serving requests from the Vue client. It can retrieve, store, and
manipulate data and it uses two different DBMS to store and re-
trieve sensor data: a relational DBMS (PostgreSQL) and a search
engine (ElasticSearch). Data ingestion is achieved using Apache
Kafka, a distributed data streaming platform enabling users to pub-
lish, subscribe to, store, and process streams of records in real-time.
It provides a distributed messaging system where producers pub-
lish records into topics, and consumers subscribe to these topics
to consume the records. In our particular case, the producers and
consumers are defined as follows:

• Kafka Producers: Spring Boot-based applications respon-
sible for collecting and publishing GIS-related data to Kafka
topics. They gather data from external data providers or IoT
devices and publish it to Kafka topics for further processing.

• Kafka Consumer: An individual Spring Boot application
subscribed to all Kafka topics to handle data persistence,
indexing, and updating to ensure data availability and con-
sistency. It processes incoming messages and stores the data
in the relevant databases.

The architecture of the system provides scalability, maintainabil-
ity, extensibility, and seamless interaction between the databases
3https://leafletjs.com/

https://leafletjs.com/
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(PostgreSQL, ElasticSearch). The Kafka messaging system, in addi-
tion, guarantees a decoupled approach to data ingestion, allowing
for fault tolerance and scalability by isolating the data insertion
procedure from the client/server communication.

In IoT domains, systems often face the challenge of processing
substantial amounts of sensor measurement data efficiently. This
includes not only analyzing historical data promptly but also in-
gesting and visualizing data almost instantaneously. To address this
aspect of the architecture, we opted for ElasticSearch, a distributed
RESTful search and analytics engine. Its capabilities in processing,
querying, and storing large volumes of data efficiently make it an
ideal choice. The objective behind using ElasticSearch is to enhance
the end-user experience by providing rapid responses to queries
concerning large-scale sensor measurements.

Given that each sensor Measurement includes a temporal value
(i.e., phenomenonTime), our product generates an index for each
day of the year, using the sensor name and date as the index name
(e.g., trafficSensorYYYYMMdd). This method guarantees that daily
measurements are stored in different indexes, ensuring scalability
and preventing performance degradation over time. ElasticSearch
allows query execution across a range of indexes using regular ex-
pressions, enabling the system to construct aggregation and search
queries easily.

For the product derivation, we use a library called spl-js-engine.
It is a JavaScript library that, following the annotative approach,
can generate final product source code from the annotated code,
the feature model of the product line, and a product specification.
spl-js-engine validates the specification of the product against the
feature model before the generation [4]. At the end of this step
Sensor Builder SPL creates a final product with all the functionality
that the user needs.

3.4 Product Deployer
As part of the workflow, SensorPublisher provides the option to de-
ploy the generated product. Docker4, an open platform for creating,
distributing, and executing applications, is used to deploy the entire
system. Docker allows developers to deliver applications faster by
separating them from infrastructure. All the components of the
final products are decoupled into different docker components that
connect between them using docker-compose. The deployment
options provided Product Deployer include:

• Local. For local deployment, Product Deployer ensures the
smooth installation of the product onto the user’s device,
providing a practical and easily accessible environment for
testing.

• SSH. Users can also choose to deploy the product on Ubun-
tu/Debian machines via SSH. This option for distributed
deployment offers greater accessibility and flexibility to a
wider range of users. The Product Deployer takes care of
preparing the machine for deploying the final product by
installing Docker and configuring Docker Compose if not
already installed on the machine.

• AWS. For deployment onAmazonWeb Services (AWS), users
may opt for enhanced accessibility and scalability. Product
Deployer facilitates the deployment process by creating an

4https://www.docker.com/

AWS instance using user credentials, configuring and in-
stalling Docker on the instance, copying the source code of
the product, and utilizing docker-compose to run it.

4 USAGE SCENARIOS
This section explores three distinct scenarios where we have used
SensorPublisher to create IoT dashboards. These scenarios focus
on analyzing meteorological conditions, traffic and air quality data,
and monitoring seawater properties.

4.1 Meteorological Monitoring System
Based in Galicia, Spain, MeteoGalicia is a weather prediction ser-
vice. It offers forecasts and meteorological data for the area, in-
cluding information on temperature, precipitation, wind speed,
and atmospheric conditions. MeteoGalicia provides precise and
current weather forecasts to help citizens, companies, and govern-
ment agencies in making well-informed decisions. We got from
MeteoGalicia a dataset with information from sensors that measure
precipitation, pressure, sun radiation, humidity, temperature, and
wind. In addition to showing data at the individual sensor level, we
define a spatial dimension that aggregates sensors at the Council
and Province levels in Galicia. This spatial dimension allows the
assessment of meteorological data across different regions, allowing
users to uncover local weather patterns. Listing 7 shows the DSL
instance that defines the sensor data model.

1 CREATE PRODUCT meteorological USING 4326;

2

3 CREATE SPATIAL DIMENSION Province (

4 geometry: Polygon

5 ) WITH PROPERTIES (

6 name String DISPLAY_STRING
7 );

8

9 CREATE SPATIAL DIMENSION Council (

10 geometry: Polygon

11 ) WITH PROPERTIES (

12 name String DISPLAY_STRING
13 ) WITH PARENT (

14 Province

15 );

16

17 CREATE SENSOR MeteorologicalStation (

18 interval: 500,

19 datasource: elasticsearch,

20 geometry: Point

21 ) WITH PROPERTIES (

22 name String,

23 registrationDate DateTime

24 ) WITH MEASUREMENT DATA (

25 precipitation Double UNITS "L/m2",

26 pressure Double UNITS "hPa",

27 solarRadiation Double UNITS "W/m2",

28 relativeHumidity Double UNITS "%",

29 temperature90 Double UNITS "C",

30 windDirection Double UNITS "",

31 windSpeed Double UNITS "m/s"

32 ) WITH SPATIAL GROUP Administrative (

33 Province, Council

34 ) WITH BBOX ([42.7, -8.1], 9);

Listing 7: Case Study DSL definition - Meteorological Status
in Galicia Province

https://www.docker.com/
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Figure 8: Meteorological Product - Map with Sensors

The finished meteorological product is shown in a screenshot
in Figure 8. To make it easier to navigate between the various
properties that the sensors measure, aggregations, and filters for
the spatial dimension are displayed on the left side of the screen
along with the properties themselves. The sensors are positioned
on a map that is shown in the middle of the screen, and the values
of each sensor’s measurement property are displayed in color based
on the map’s legend. To navigate in the temporal dimension, a
navigation time bar is shown in the bottom center of the screen.

4.2 Traffic and air quality data
The city of Madrid provides citizens with access to a range of open
data concerning the city’s status 5 6. In this scenario, our objective
is to analyze the traffic and air quality within the city, with the
ability to aggregate and filter the data based on census sections,
districts, and municipalities.

In this scenario, we have two different sensor definitions: one for
traffic sensors and another for air quality sensors. These two sensor
types will share a spatial dimension that reflects the administrative
division of the city (i.e., Section, District, and Municipality). Further-
more, an extra spatial dimension known as Voronoi will be added to
the air quality sensors, which will help analyze pollution hotspots
inside the city that are not connected to departmental boundaries.
The traffic sensors collect measurements of traffic intensity, aver-
age vehicle speed, and lane occupancy percentage. Meanwhile, the
air quality sensors collect measurements related to air pollution,
including the levels of carbon dioxide, carbon monoxide, pollution
microparticles, and so forth. Listing 8 shows the DSL instance that
defines the sensor data model.

5https://datos.madrid.es/portal/site/egob
6https://informo.madrid.es/

1 CREATE PRODUCT magist USING SRID 4326;

2

3 CREATE SPATIAL DIMENSION Municipality (

4 geometry: Geometry

5 ) WITH PROPERTIES (

6 cMun Integer DISPLAY_STRING
7 );

8

9 CREATE SPATIAL DIMENSION District (

10 geometry: Geometry

11 ) WITH PROPERTIES (

12 cDis Integer DISPLAY_STRING
13 ) WITH PARENT (

14 Municipality

15 );

16

17 CREATE SPATIAL DIMENSION Section (

18 geometry: Geometry

19 ) WITH PROPERTIES (

20 cSec Integer DISPLAY_STRING
21 ) WITH PARENT (

22 District

23 );

24

25 CREATE SPATIAL DIMENSION Voronoi (

26 geometry: Geometry

27 ) WITH PROPERTIES (

28 magnitude Integer DISPLAY_STRING
29 );

30

31 CREATE SENSOR QAObservation (

32 interval: 3600,

33 datasource: elasticsearch,

34 geometry: Point

35 ) WITH PROPERTIES (

36 address String,

37 station Long,

38 registrationDate DateTime,

39 nameType String,

40 viaName String

41 ) WITH MEASUREMENT DATA (

42 so2 Double,

43 co Double,

44 no Double,

45 no2 Double,

46 pm25 Double,

47 pm10 Double,

48 nox Double

49 ...

50 ) WITH SPATIAL GROUP Administrative (

51 Section, District, Municipality

52 ) WITH SPATIAL GROUP Voronoi (

53 Voronoi

54 ) WITH BBOX ([40.42, -3.7], 12);

55

56 CREATE SENSOR TrafficObservation (

57 interval: 300,

58 datasource: elasticsearch,

59 geometry: Point

60 ) WITH PROPERTIES (

61 description String,

62 subarea Long,

63 name String

64 ) WITH MEASUREMENT DATA (

65 intensity Double UNITS "veh/h" ICON "network_check",

66 velocity Double UNITS "km/h" ICON "speed",

67 ocupation Double UNITS "%" ICON "emoji_transportation"

68 ) WITH SPATIAL GROUP Administrative (

69 Section, District, Municipality

https://datos.madrid.es/portal/site/egob
https://informo.madrid.es/
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Figure 9: Traffic Product - Spatial Aggregation by District

70 ) WITH BBOX ([40.42, -3.7], 12);

Listing 8: Case Study DSL definition - Traffic and Quality Air
in Madrid

A screenshot of the administrative spatial dimension (defined by
the sentence WITH SPATIAL GROUP Administrative in Listing 8)
can be seen in Figure 9. The tool enables the spatial aggregation
and filtering of sensors grouped by district, enabling the analysis
of observations in these areas.

4.3 Seawater monitoring
The Galician Technological Institute for the Control of Marine
Environment (INTECMAR) provides marine environment data to
geosciences researchers. One dataset includes measurements from
CTD sensors. CTD stands for conductivity, temperature, and depth
sensor, a common instrument used in oceanography to measure
various properties of seawater with depth. INTECMAR conducts
measurements along Galicia’s coasts using sensors integrated in
maritime buoys. These sensors detect parameters such as water
temperature, salinity, pH, and oxygen content, alongside conduc-
tivity, UV fluorescence, and radiance, measured at specific water
depths. Spatial filtering can be applied to these sensors using an
“Estuary” spatial dimension. Additionally, each sensor measurement
is associated with a specific water depth, requiring a categorical
dimension for the “depth” field, categorized into specific ranges.
Listing 9 shows the DSL instance that defines the sensor data model.

1 CREATE PRODUCT intecmar USING 4326;

2

3 CREATE SPATIAL DIMENSION Estuary (

4 geometry: Polygon

5 ) WITH PROPERTIES (

6 shortName String DISPLAY_STRING,
7 name String,

8 zone String

9 );

10

Figure 10: Marine Product - Sensor with Categorical Dimen-
sion

11 CREATE CATEGORICAL DIMENSION Depth (

12 field: depth

13 );

14

15 CREATE RANGE DepthRange (

16 0 TO 3 AS "surface",

17 4.75 TO 5.25 AS "5m",

18 9.75 TO 10.25 AS "10m",

19 14.75 TO 15.25 AS "15m",

20 19.75 TO 20.25 AS "20m"

21 );

22

23 CREATE SENSOR StationObservation (

24 interval: 300,

25 datasource: elasticsearch,

26 geometry: Point

27 ) WITH PROPERTIES (

28 maxDepth Float,

29 code String,

30 name String,

31 description String,

32 startTime DateTime

33 ) WITH MEASUREMENT DATA (

34 temperatureITS90 Double UNITS "C" ICON "thermometer-low",

35 salinity Double UNITS "PSU",

36 pressure Double UNITS "dbar" ICON "speedometer",

37 ph Double UNITS "pH" ICON "ph",

38 oxygen Double UNITS "mg/l" ICON "gas-cylinder",

39 transmittance Double UNITS "m",

40 irradiance Double UNITS "W/m2",

41 uv_flourescence Double UNITS "mg/m3",

42 density Double UNITS "kg/m3",

43 ) WITH SPATIAL GROUP Estuary (

44 Estuary

45 ) WITH CATEGORICAL GROUP Depth (

46 Depth RANGE DepthRange

47 ) WITH BBOX ([42.7, -8.1], 9);

Listing 9: Case Study DSL definition - Marine Area
Monitoring System
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Figure 11: Marine Product - Value evolution chart by Cate-
gorical Dimension “depth”

The categorical dimension “depth”, which is defined by the user
in Listing 9 with the sentence CREATE CATEGORICAL DIMENSION
depth, appears on the left bar in Figure 10. Now that this new
dimension has been added, the user may perform analyses and
filter the results based on depth ranges. Additionally, if a spatial or
temporal aggregation is chosen, the popup can now display an evo-
lution chart that shows the values of each range of the categorical
dimension. This is displayed in Figure 11, which aggregates mea-
surements monthly and distinguishes between depth dimension
range values.

5 CONCLUSIONS AND FUTUREWORK
We have presented a framework that offers a complete way to deal
with the difficulties of developing sensor-based, web-centric, data
warehousing information systems in geosciences domains. The soft-
ware product line, the domain-specific language, and the low-code
development tool simplify the development process and increase its
efficiency and accessibility for geoscientists. Our approach empow-
ers geoscience researchers by enabling them to share their datasets
through a web application with little effort.

The first outcome of our research is the successful definition
and implementation of a software product line tailored specifically
for IoT dashboards within the geoscience domain. The products
generated allow users to filter and aggregate data spatially, tem-
porally, and by attribute values. Users can also create charts (e.g.,
histograms and value evolution charts). Finally, the products are
efficient in terms of querying and retrieving large datasets and an
ingestion subsystem is provided to receive and store sensor data
streams. We showcased and validated the software product line in
three real-world geoscience scenarios: a meteorological monitoring
system, traffic and air quality data, and seawater monitoring. Initial
feedback from geoscience researchers who assisted in setting up
the scenarios indicates that our software product line significantly
reduces the time and effort required to establish IoT-based systems
for their research. Rather than starting from scratch, researchers
can now focus their efforts on aspects specific to their applications,
leading to increased productivity. As part of our future work, We

aim to conduct formal usability evaluations to gather comprehen-
sive feedback and insights from geoscience researchers.

The second outcome is the definition and implementation of
a DSL designed for describing data warehouses of sensor data,
which is also aligned with the Open Geospatial Consortium (OGC)
SensorThings API standard. Using this language, researchers and
developers can define the various sensor types within their network,
including detailed descriptions of properties and measurements
associated with each sensor type. Additionally, the language enables
researchers to specify the dimensions of their data warehouse (both
spatial and attribute-based) and to describe visualization styles for
their data (i.e., assigning ranges of values and colors to each sensor
measurement). The integration of the language into the software
product line increases flexibility and reduces the effort required for
defining and configuring data warehouses of sensor data.

The third outcome is the development of a user-friendly, low-
code tool aimed at geoscience researchers that simplifies the process
of publishing collected datasets. The tool generates and deploys
web-based applications so that geoscientists with little program-
ming experience do not have to spend a lot of time manually coding.

Finally, we believe that our framework can be replicated in other
scenarios. While the SPL and the DSL would have to be defined for
those scenarios, the framework has been defined and implemented
in a sufficiently general manner to enable easy reuse.

In future work, we want to integrate new types of IoT sensors
into our framework. Our current implementation focuses on static
sensors, but we want to include mobile sensors by extending the
DSL to be able to define these types of sensors, and the software
product line to include functionality to query and visualize them.
As another part of our future work, we’re actively working to
release our framework as open-source software. We have already
published some of the basic components (i.e., the derivation engine
spl-js-engine7, the map-viewing component8, a DSL for web-based
geographic information systems that is used as a foundation for
our DSL9, and the code uploading component10).
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