
DSL-Xpert: LLM-driven Generic DSL Code Generation
Daniel Garcia-Gonzalez∗

Universidade da Coruña
A Coruña, Spain
d.garcia2@udc.es

Victor Lamas
Universidade da Coruña

A Coruña, Spain
victor.lamas@udc.es

Miguel R. Luaces
Universidade da Coruña

A Coruña, Spain
miguel.luaces@udc.es

ABSTRACT
Nowadays, large language models (LLMs) are an extremely useful
and fast tool to complement and help in many jobs and current
problems. However, there are cases where a pretty specific vocab-
ulary is used in which these models were not previously trained,
leading to less satisfactory results. More specifically, these models
are less effective when dealing with less-known or unpublished
domain-specific languages (DSLs). Within this field, the automatic
generation of code based on such languages, starting from natural
language, would speed up the development times of any related
project, as well as the understanding of such DSLs. Therefore, this
paper presents a tool in which developers can perform what is
known as semantic parsing. In other words, the developer can ask
a pre-trained LLM to translate a natural language instruction into
the vocabulary of the established DSL. Thus, by setting the DSL
grammar as context (grammar prompting) and providing usage ex-
amples (few-shot learning), the LLM can quickly generate reliable
domain-specific code, significantly improving the quality of life of
the developers. A video demonstration of the tool is shown in the
following link: https://zenodo.org/records/12610506.

CCS CONCEPTS
• Software and its engineering→ Application specific devel-
opment environments.

KEYWORDS
Domain-specific languages (DSLs), large language models (LLMs),
semantic parsing, grammar prompting, few-shot learning
ACM Reference Format:
Daniel Garcia-Gonzalez, Victor Lamas, and Miguel R. Luaces. 2024. DSL-
Xpert: LLM-driven Generic DSL Code Generation. In ACM/IEEE 27th Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3652620.3687782

1 INTRODUCTION
Within the software engineering field, the development of domain-
specific languages (DSLs) is a critical point in order to express
∗All authors have contributed equally and the names are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687782

and manage domain-specific concepts and processes clearly, espe-
cially for people less familiar with coding. Unlike general-purpose
languages, DSLs are designed to address each domain’s particu-
lar requirements and complexities, offering greater expressiveness,
abstraction, and efficiency. In addition, DSLs also promote reusabil-
ity, maintainability, and scalability, thus optimizing workflows and
improving software quality.

However, despite all these benefits, DSLs are not without draw-
backs. One significant challenge is the overhead cost associated
with the design, implementation, and maintenance of each individ-
ual DSL, which typically requires specialized expertise and longer
development times. In addition, the lack of robust support for each
tool and comprehensive documentation can increase the learning
curve for each DSL, discouraging potential users and restraining
the widespread diffusion of this kind of solution.

For these reasons, the emergence and far-reaching use of large
language models (LLMs) represents a paradigm shift in DSL engi-
neering. These LLMs, such as GPT-3 and its successors, are models
already trained using vast amounts of natural language data, which
gives them a deep understanding of linguistic structures, patterns,
and semantics. In this way, LLMs can facilitate various aspects of
DSL development, such as code generation and documentation, thus
optimizing their lifecycle and improving developer productivity.

Nonetheless, these LLMs need prior configuration in order to
work accurately with each particular DSL. After all, although these
have been trained with large amounts of data and, in many cases,
some well-known DSLs such as SQL, most of the DSLs are usually
not public or previously known. To overcome this issue, this paper
presents DSL-Xpert, a tool focused on using GPT-based LLMs for
code generation for previously defined DSLs. Along with a previ-
ous context configuration of the LLM and its usage parameters,
using grammar prompting and few-shot learning, the tool is able
to perform semantic parsing towards a specific DSL. In this way,
there is no need for an exhaustive knowledge of it.

The paper is organized as follows. Section 2 presents a number of
recent related studies, as well as the concepts needed to understand
how the tool works. Then, in Section 3, the specific functionalities
of the tool, as well as its architecture, are discussed. After that, in
Section 4, a representative usage example is shown, with each of
the necessary steps to carry it out. Finally, Section 5 reviews some
limitations of the tool and Section 6 presents a series of conclusions
and future work lines.

2 BACKGROUND
This section presents works related to the automatic generation of
DSL-specific code. To this end, four key concepts are introduced
and detailed in the following subsections. However, it should be
noted that the use of LLMs to deal with DSL-related problems is
an extremely recent topic with a long way to go. However, there

https://orcid.org/0000-0003-0686-3168
https://orcid.org/0000-0001-8960-1299
https://orcid.org/0000-0003-0549-2000
https://zenodo.org/records/12610506
https://doi.org/10.1145/3652620.3687782
https://doi.org/10.1145/3652620.3687782

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Garcia-Gonzalez et al.

are works with remarkably diverse approaches, from the direct use
of ChatGPT [5] to the study of the results when using different
LLMs, prompts, and types of DSLs [7, 15]. In the case of DSL-Xpert,
the tool presented in this paper, it takes advantage of all these
new features already provided in previous works, resulting in an
efficient, transparent, and easy-to-use tool.

2.1 Semantic parsing
Given the huge proliferation of LLMs in recent years, the semantic
parsing field is being extensively studied [8]. More specifically, this
process consists of understanding the meaning behind each linguis-
tic expression introduced. Within the scope presented in this paper,
it would involve interpreting the user’s intentions when writing
instructions related to the DSL in question. Thus, for example, if
the model is asked to “create a new product”, the LLM should be
able to translate this concept using the DSL previously specified,
without performing the literal action requested in that instruction.
Fortunately, with the broad supply of LLMs available and already
trained with vast amounts of data and in different scenarios, this
is a problem that can be avoided for the topic of this paper. The
resources needed to use and create a custom model that could work
similarly to these are absurdly large. In this way, few research
groups could carry it out. Given that, models such as OpenAI’s
GPT [2] or Meta’s LLaMa [1] could already be used to address this
problem with excellent results.

2.2 Grammar prompting
To ensure that the LLM correctly understands what to do and per-
forms a successful semantic parsing, it is essential to previously
establish the rules to be followed or, in this case, the specific vocab-
ulary to be used. In many cases, this is not mandatory, since the
available models are usually already trained to work correctly for
generic purposes. However, there are specific cases, such as DSL-
specific code generation, where this step is fundamental. Given
that, grammar prompting would consist of previously defining the
syntactic and semantic rules that define the structure and behavior
of the DSL [14]. One of the most common approaches in the litera-
ture to represent these grammars is the Backus-Naur Form (BNF)
[10, 11], since it provides a clear and easy-to-understand definition.
Nevertheless, other approaches like those based on JSON or XML
could also be used with high-grade results [4, 16]. In this way, the
LLM can recognize the vocabulary represented in those grammars,
resulting in responses that use the patterns therein.

2.3 Few-shot learning
One of the most common dynamics when it comes to quickly estab-
lishing contexts to be followed by LLMs is the so-called few-shot
learning [12]. In this case, the model is intended to be able to gen-
erate new instances from a series of previous examples of use,
assimilating and detecting the common patterns in these samples.
Therefore, the more examples and the more varied they are, the
better the generation capability of the final model [3]. For the case
discussed in this paper, each of these examples would consist of
the instruction to be translated to the DSL in question, written in
natural language, together with the expected response of the LLM,
using the grammar of that DSL. Thus, it is worth noting that this

Figure 1: Example of a model already created in DSL-Xpert,
with its parameters configured and the LLM chat running.

approach has many limitations, since it greatly depends on the
examples provided. If an attempt was made to infer a significantly
different example from those provided before, the model could give
inaccurate results. In any case, it is a very fast and easy-to-apply
dynamic that is worth using in developments of this type.

2.4 Model fine-tuning
As discussed previously, the LLMs available to the general public
work exceptionally well in most situations. However, this generic
purpose means they do not work as well when dealing with pretty
unique cases such as the one discussed in this paper. For this reason,
one of the options that many developers use is to fine-tune these
pre-trained models [6, 13]. In this way, in addition to the large
amounts of data already processed by these models, a set of data
related to the given subject would be added, in which the LLM
would be trained again to incorporate it into its internal knowl-
edge. Within this field, one of the most common approaches is
Retrieval-Augmented Generation (RAG) [9]. Here, instead of adapt-
ing the selected model to the given context, a series of external
data is added to it, which can then be employed to enrich its an-
swers, facilitating and accelerating the process. In any case, the
resources required for fine-tuning models are greater than those of
the previously mentioned approaches. A large and representative
data set would be needed to obtain somewhat satisfactory results,
as well as equipment powerful enough to carry out the training in
a reasonable time.

3 LLM INTEGRATION
This section details all the functionalities of DSL-Xpert, as well as
the general architecture of the tool. The whole development was
based on the following fundamental objectives:

DSL-Xpert: LLM-driven Generic DSL Code Generation MODELS Companion ’24, September 22–27, 2024, Linz, Austria

• Taking advantage of the new technologies based on artificial
intelligence and improving their use for domains in which
they are not as excellent.

• Bringing closer and simplifying the use of DSL and LLM
approaches for people less familiar with coding.

• Elaborating a flexible, intuitive, and practical tool that works
accurately independently of the specified domain.

3.1 Features
Taking into account the objectives highlighted before, the main
features of the tool focus on the following two points:

• Model creation. DSL-Xpert offers the possibility to create
different models for each related problem. In this way, the
user can apply different types of DSLs or configurations of
the selected LLM, depending on the associated context. Thus,
a ready-to-use agent is available, both for the creation of
new code and for helping new users understand the specific
domain.

• LLM chat. Once a model has been created and all its param-
eters configured, the tool establishes a direct communication
channel between the user and the selected LLM. Hence, each
of the instructions entered is quickly translated by the model
into the DSL in question.

To see how the tool looks with these functionalities, Figure 1 shows
the chat layout, as well as the parameters defined for the created
model. As can be seen, the instructions entered by the user are
almost immediately transferred to the vocabulary of the designated
DSL, with all the related advantages discussed in the previous
paragraphs.

3.2 Tool architecture
DSL-Xpert was built from the following components:

• Client. The tool’s architecture comprises a client-side visual
component developed using Vue 3 (a Javascript Framework
for building user interfaces), Vuetify (a visual component
library for Vue), and Vue Router to facilitate navigation be-
tween views and components.

• Server. The tool exposes a RESTful API for CRUD operations
on models and chat functions on the server side by combin-
ing Node.js and Express.js. It facilitates CRUD operations
by defining database schemas using Mongoose, a MongoDB
object modeling tool. The server also creates requests to the
OpenAI API when needed (normally when the user sends a
request to a model).

• Database. DSL-Xpert uses MongoDB, a non-relational data-
base, to persist data that is accessed and modified by server-
side operations.

• Docker. The client, server, database, and Nginx configu-
rations are all contained within distinct containers thanks
to the tool’s Dockerization of each component. Similarly,
an Nginx container manages the redirection between client
and server components. Because the Docker Compose con-
figuration exposes a single route for the final application,
this method simplifies deployment and ensures consistency
across various environments.

Server (Nodejs)

R
ES

T

Controller

Schema

OpenAI API

R
ES

T

API
Controller

Client (Vuejs)

 ModelChat

 ModelForm

 ModelList

Nginx

Nginx

MongoDB

Figure 2: DSL-Xpert architecture.

This architecture is depicted in Figure 2, with the server han-
dling persistence and communicating with the MongoDB database.
Likewise, the visual client sends requests to the server via the REST
protocol. As can be seen, each Docker container managed by Docker
Compose is represented by the blue dotted lines.

4 RUNNING EXAMPLE
To prove the usefulness of the tool in a much more visual way, this
section presents a running example, highlighting the reliability of
the results provided by the LLM. To set up the initial configuration
and be able to reproduce the complete example, the next seven
steps must be followed:

(1) Download the source code from https://github.com/lbdudc/
dsl-xpert.

(2) Set the OpenAI API key to your one inside the .env file
(previous account creation is required).

(3) Ensure that Docker is installed before executing the tool
by typing docker-compose up in the terminal (additional
options to run the tool are detailed in the project’s README).

(4) Go to localhost:5555 in your browser to access the tool and
start creating a new model by clicking on “New model”.

(5) Set the model name and description. Also, choose as devel-
oper “OpenAI”, and as model type “gpt-3.5-turbo”. The rest of

https://github.com/lbdudc/dsl-xpert
https://github.com/lbdudc/dsl-xpert

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Garcia-Gonzalez et al.

the parameters can be the default, except for model grammar
and usage examples.

(6) Write the following grammar inside the model grammar
parameter:

Listing 1: Grammar for a DSL that describes IoT
datawarehouses

r oo t : : = c r e a t e S t a t emen t +
c r e a t e S t a t emen t : : = "CREATE " (c r e a t e P r o d u c t |

c r e a t eRange | c r ea t eD imens ion | c r e a t e S e n s o r)
c r e a t e P r o du c t : : = "PRODUCT " i d e n t i f i e r " USING "

intNumber " ; "
c r e a t eRange : : = "RANGE " i d e n t i f i e r " (" rangeProp (" , "

rangeProp) ∗ ") ; "
rangeProp : : = rangeNumber ("TO " rangeNumber) ? "AS "

i d e n t i f i e r ("COLOR " hexColor) ? | "DEFAULT " "AS "
i d e n t i f i e r ("COLOR " hexColor) ?

rangeNumber : : = i d e n t i f i e r | f l oa tNumber | intNumber |
" INFINITY " | "− INFINITY "

c r ea t eD imens ion : : = " SPATIAL DIMENSION " i d e n t i f i e r " ("
" geometry " " : " (type | " Geometry ") ") "
c rea teDimProp " ; "

c rea teDimProp : : = "WITH PROPERTIES (" dimPropDef (" , "
dimPropDef) ∗ ") "

dimPropDef : : = i d e n t i f i e r type
c r e a t e S e n s o r : : = " SENSOR " i d e n t i f i e r " (" " i n t e r v a l " " :

" intNumber " , " " d a t a s ou r c e " " : " d a t a Sou r c e " , "
" geometry " " : " type ") " c r e a t e S en s o rP r op
sensorMeasData (sensorSpatDim) ∗ " ; "

c r e a t e S en s o rP r op : : = "WITH PROPERTIES (" s enso rP rop (" , "
s enso rP rop) ∗ ") "

s enso rP rop : : = i d e n t i f i e r type
sensorMeasData : : = "WITH MEASUREMENT DATA (" measProp

(" , " measProp) ∗ ") "
measProp : : = i d e n t i f i e r type (" UNITS " i d e n t i f i e r) ? (

" ICON " i d e n t i f i e r) ? (" RANGE " i d e n t i f i e r) ?
sensorSpatDim : : = "WITH SPATIAL DIMENSIONS " i d e n t i f i e r

" ("
i d e n t i f i e r : : = t e x t
char : : = [a−z] | [A−Z] | [0 −9]
t e x t : : = char | char t e x t
type : : = " Long " | " Boolean " | " F l o a t " | " I n t e g e r " | "

Double " | " L o c a l d a t e " | " S t r i n g " | " Date t ime " |
" L i n e s t r i n g " | " Polygon " | " Po i n t "

d a t a Sou r c e : : = " p o s t g r e s " | " e l a s t i c s e a r c h "
hexColor : : = " # " d i g d ig d i g d i g d i g d i g
d i g : : = [0 −9] | [A−F]

(7) Enter the following usage examples at the end of the model
creation interface (first the model instruction and then the
expected result). For each usage example, we first give the
example user instruction, and then expected model answer.

Listing 2: First usage example
Crea t e a p roduc t c a l l e d in t e cmar with an s r i d o f 4 3 2 6 .

CREATE PRODUCT in t e cmar USING 43 2 6 ;

Listing 3: Second usage example
Crea t e a s p a t i a l d imens ion c a l l e d Mun i c i p a l i t y with a

Geometry geometry and a p rope r t y c a l l e d cMun , which
i s an I n t e g e r .

CREATE SPATIAL DIMENSION Mun i c i p a l i t y (geometry :
Geometry) WITH PROPERTIES (cMun I n t e g e r) ;

Listing 4: Third usage example
Crea t e a range c a l l e d MagnitudRange with the f o l l ow i n g

d e f i n i t i o n s : 0−3 f o r s u r f a c e , 4 . 7 5 − 5 . 2 5 f o r 5m and
9 . 7 5 − 1 0 . 2 5 f o r 10m.

CREATE RANGE MagnitudRange (0 TO 3 AS " s u r f a c e " , 4 . 7 5 TO
5 . 2 5 AS "5m" , 9 . 7 5 TO 1 0 . 2 5 AS "10m") ;

Listing 5: Fourth usage example
Crea t e a s en so r c a l l e d S t a t i o nOb s e r v a t i o n with a 300

i n t e r v a l , an e l a s t i c s e a r c h d a t a s ou r c e and a Po in t
geometry . I t a l s o has s e v e r a l d i f f e r e n t p r o p e r t i e s
c a l l e d as f o l l ows , with t h e i r d a t a t yp e between
p a r e n t h e s i s : name (S t r i n g) and desc (S t r i n g) . I t
a l s o has the f o l l ow i n g measurement da t a names ,
a long with t h e i r d a t a t ype s , un i t s , i c on and range
between p a r e n t h e s i s (no te t h a t many o f them may
l a c k the range and the i con i n f o rma t i on) : temp
(Double , "K " , " therm " , TempRange) , s a l i n i t y
(Double , " PSU ") , p r e s s u r e (Double , " dbar ") , ph
(Double , "pH ") . I t a l s o has one s p a t i a l d imens ion
c a l l e d Es tuary , which i n c l u d e s the Es tua ry
d imens ion .

CREATE SENSOR S t a t i o nOb s e r v a t i o n (i n t e r v a l : 3 00 ,
d a t a s ou r c e : e l a s t i c s e a r c h , geometry : Po in t) WITH
PROPERTIES (name S t r i ng , de sc S t r i n g) WITH
MEASUREMENT DATA (temp Double UNITS "K" ICON
" therm " RANGE TempRange , s a l i n i t y Double UNITS
" PSU " , p r e s s u r e Double UNITS " dbar " , ph Double
UNITS "pH ") WITH SPATIAL DIMENSIONS Es tua ry (
E s tua ry) ;

(8) After the model has been created with the DSL grammar
specified and examples of inputs and expected outputs added,
the user can begin entering inputs to ask the model to create
some DSL instances through chat. The following examples
show the text entered in the model’s chat window and the
actual outcomes that were achieved with highlighted syntax.

Listing 6: First chat example
Crea t e a p roduc t c a l l e d 'MITCGIT ' with a s r i d o f 23568

CREATE PRODUCT MITCGIT USING 2 3 5 6 8 ;

Listing 7: Second chat example
Write a s p a t i a l d imens ion ' Mun i c i p a l i t y ' with a geometry

o f type geometry and a p rope r t y c a l l e d ' cMun ' ,
which i s an I n t e g e r .

CREATE SPATIAL DIMENSION Mun i c i p a l i t y (
geometry : Geometry

) WITH PROPERTIES (
cMun I n t e g e r) ;

Listing 8: Third chat example
Formula te a range known as 'Depth ' t h a t i n c l u d e s the

f o l l ow i n g v a l u e s : 0−3 (sha l l ow) , 4−9 (deep) , 10 −20
(very deep) .

CREATE RANGE Depth (
0 TO 3 AS " sha l l ow " ,
4 TO 9 AS " deep " ,
10 TO 20 AS " very deep ") ;

DSL-Xpert: LLM-driven Generic DSL Code Generation MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Listing 9: Fourth chat example
Crea t e a s en so r c a l l e d ' T r a f f i c ' with an i n t e r v a l o f

300 , made in p o s t g r e s and a po i n t geometry . I t has
a s e r i e s o f p r o p e r t i e s d e f i n e d below : desc (S t r i n g)
and name (S t r i n g) . As f o r the measurement data ,
they a r e p r e s en t e d below , t o g e t h e r with t h e i r
t ypo logy and un i t s in b r a c k e t s : i n t e n s i t y (Double ,
' veh / h ') , speed (Double , 'km/ h ') , occupancy
(Double , ' \ % ') . F i n a l l y , t h i s s en so r be l ongs to two
d i f f e r e n t s p a t i a l d imens ions : one c a l l e d
' Admin i s t r a t i on ' which i n c l u d e s ' Sec t i on ' ,
' D i s t r i c t ' and ' Mun i c i p a l i t y ' ; and ano the r c a l l e d
' Neighbourhood ' which i n c l u d e s the d imens ion c a l l e d
' Neighbourhood ' .

CREATE SENSOR T r a f f i c (
i n t e r v a l : 3 00 ,
d a t a s ou r c e : po s t g r e s ,
geometry : Po i n t

) WITH PROPERTIES (
de sc S t r i ng ,
name S t r i n g

) WITH MEASUREMENT DATA (
i n t e n s i t y Double UNITS " veh / h " ,
speed Double UNITS "km/ h " ,
occupancy Double UNITS "%"

) WITH SPATIAL DIMENSIONS Adm in i s t r a t i o n (
S e c t i on , D i s t r i c t , Mun i c i p a l i t y

) WITH SPATIAL DIMENSIONS Neighbourhood (
Neighbourhood) ;

5 LIMITATIONS AND THREATS TO VALIDITY
Despite its strength, DSL-Xpert has some drawbacks and validity
issues. First, the quality and thoroughness of the grammar and the
examples supplied determine how effective the tool is. In fact, the
resulting code may be inaccurate if these are missing any infor-
mation or are not entirely representative. Furthermore, the tool’s
performance might vary notably based on the specificity and com-
plexity of the DSL, and its generalizability across other DSLs is
restricted, requiring adjustments for each new project. In addition,
due to the reliance on pre-trained LLM models, the outcomes may
be impacted by any biases or restrictions present in these models.
Hence, the setting of all the related parameters is crucial.

Finally, the tool’s output has not been strictly evaluated. That
means that more comprehensive, quantitative and qualitative test-
ing and a range of different evaluation scenarios are needed to
assess its resilience and reliability in real-world applications.

6 CONCLUSIONS AND FUTUREWORK
This paper presents DSL-Xpert, a tool qualified to generate code for
a specific DSL quickly and easily, without the need to be an expert
in the domain. Thus, the tool establishes a direct channel with the
OpenAI API, creating a chat using a previously selected GPT model.
Each of these channels is set up beforehand, independently for each
specific project. In this way, the different parameters that shape the
chat are defined. In addition to the parameters of any current LLM,
the initial context of the chosen LLM is also established, through
the specific DSL grammar and some usage examples. Hence, an
environment is created in which the LLM is able to translate the
instructions received into the vocabulary defined by the project’s
DSL in a matter of seconds. Consequently, in addition to the evident

gain in time, it also helps to make the DSLs’ learning curve much
smoother for people more inexperienced in the domain.

Currently, work is underway to increase the flexibility of DSL-
Xpert, by introducing other LLM types, in addition to those already
available from OpenAI. As a result, it would facilitate access to
many more users, being able to use models from different brands
and even custom ones. Consequently, it could potentially improve
the final results by using more specific and pre-trained models in
dynamics more related to the problem in question.

ACKNOWLEDGMENTS
CITIC is funded by the Xunta de Galicia through the collaboration
agreement between the Department of Culture, Education, Voca-
tional Training and Universities and the Galician universities for the
reinforcement of the research centers of the Galician University Sys-
tem (CIGUS); partially funded byMCIN/AEI/10.13039/501100011033
and “NextGenerationEU”/PRTR: [PLAGEMIS: TED2021-129245B-
C21]; partially funded by MCIN/AEI/10.13039/501100011033 and
EU/ERDF A way of making Europe: [EarthDL: PID2022-141027NB-
C21]; partially funded by GAIN/Xunta de Galicia: [GRC: ED431C
2021/53 and ED431G 2023/01]

REFERENCES
[1] [n. d.]. Meta Llama models. https://github.com/meta-llama. Accessed: 06/05/2024.
[2] [n. d.]. OpenAI models. https://platform.openai.com/docs/models. Accessed:

06/05/2024.
[3] Nils Baumann, Juan Sebastian Diaz, Judith Michael, Lukas Netz, Haron Nqiri, Jan

Reimer, and Bernhard Rumpe. 2024. Combining Retrieval-Augmented Generation
and Few-Shot Learning for Model Synthesis of Uncommon DSLs. InModellierung
2024 Satellite Events. Gesellschaft für Informatik eV, 10–18420.

[4] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2024. Guiding LLMs
The Right Way: Fast, Non-Invasive Constrained Generation. arXiv preprint
arXiv:2403.06988 (2024).

[5] Daniel Busch, Gerrit Nolte, Alexander Bainczyk, and Bernhard Steffen. 2023.
ChatGPT in the loop: a natural language extension for domain-specific modeling
languages. In International Conference on Bridging the Gap between AI and Reality.
Springer, 375–390.

[6] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning
for text classification. arXiv preprint arXiv:1801.06146 (2018).

[7] Rijul Jain, Wode Ni, and Joshua Sunshine. 2023. Generating Domain-Specific
Programs for Diagram Authoring with Large Language Models. In Compan-
ion Proceedings of the 2023 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity. 70–71.

[8] Aishwarya Kamath and Rajarshi Das. 2018. A survey on semantic parsing. arXiv
preprint arXiv:1812.00978 (2018).

[9] Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. 2022. A survey on
retrieval-augmented text generation. arXiv preprint arXiv:2202.01110 (2022).

[10] Daniel D McCracken and Edwin D Reilly. 2003. Backus-naur form (bnf). In
Encyclopedia of Computer Science. 129–131.

[11] Katsumi Okuda and Saman Amarasinghe. 2024. AskIt: Unified Programming
Interface for Programming with Large Language Models. In 2024 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 41–
54.

[12] Archit Parnami and Minwoo Lee. 2022. Learning from few examples: A summary
of approaches to few-shot learning. arXiv preprint arXiv:2203.04291 (2022).

[13] Kushala VM, Harikrishna Warrier, Yogesh Gupta, et al. 2024. Fine Tuning
LLM for Enterprise: Practical Guidelines and Recommendations. arXiv preprint
arXiv:2404.10779 (2024).

[14] Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim.
2024. Grammar prompting for domain-specific language generation with large
language models. Advances in Neural Information Processing Systems 36 (2024).

[15] Jiaye Wang. 2024. Guiding Large Language Models to Generate Computer-
Parsable Content. (2024).

[16] Idrees A Zahid and Shahad Sabbar Joudar. 2024. Enhancing XML-based Compiler
Construction with Large Language Models: A Novel Approach. Mesopotamian
Journal of Big Data 2024 (2024), 23–39.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://github.com/meta-llama
https://platform.openai.com/docs/models

	Abstract
	1 Introduction
	2 Background
	2.1 Semantic parsing
	2.2 Grammar prompting
	2.3 Few-shot learning
	2.4 Model fine-tuning

	3 LLM integration
	3.1 Features
	3.2 Tool architecture

	4 Running Example
	5 Limitations and Threats to Validity
	6 Conclusions and Future Work
	Acknowledgments
	References

